b-metric spaces and related fixed point theorems
نویسندگان
چکیده
In this paper, we introduce some concepts in partial b-metric spaces. We establish fixed point theorems for some new generalized α − ψ type contractive mappings in the setting of partial b-metric spaces. Some examples are presented to illustrate our obtained results. Finally, we show that the results generalize some recent results. c ©2016 All rights reserved.
منابع مشابه
Fixed Point Theorems for semi $lambda$-subadmissible Contractions in b-Metric spaces
Here, a new certain class of contractive mappings in the b-metric spaces is introduced. Some fixed point theorems are proved which generalize and modify the recent results in the literature. As an application, some results in the b-metric spaces endowed with a partial ordered are proved.
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کاملFixed point theorems on generalized $c$-distance in ordered cone $b$-metric spaces
In this paper, we introduce a concept of a generalized $c$-distance in ordered cone $b$-metric spaces and, by using the concept, we prove some fixed point theorems in ordered cone $b$-metric spaces. Our results generalize the corresponding results obtained by Y. J. Cho, R. Saadati, Shenghua Wang (Y. J. Cho, R. Saadati, Shenghua Wang, Common fixed point heorems on generalized distance in ordere...
متن کاملA generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces
In this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. In particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملRational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces
In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...
متن کامل